

Courtesy of Holbert Apple Associates

8621 Georgia Avenue Silver Spring, MD

Nick Dastalfo | Structural Option Advisor: Dr. Thomas Boothby April 13, 2015

Courtesy of Holbert Apple Associates

- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Building Introduction

Owner: FP Wilco, LLC

Structural Engineering: Holbert Apple Associates

Size: 347,000 GSF

Stories: 17

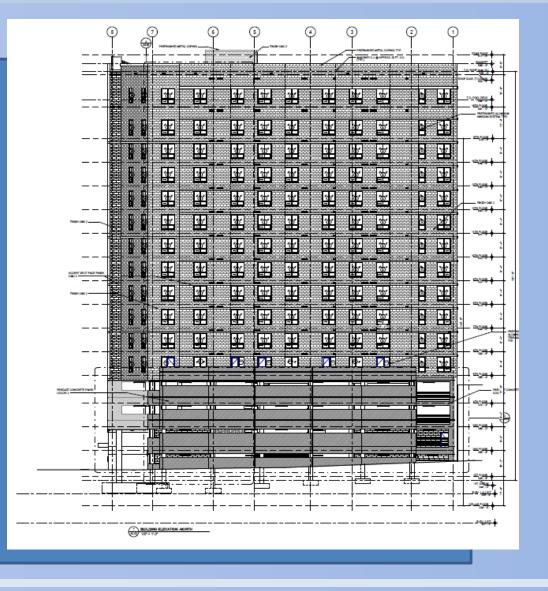
Height: 162 ft.

Cost: \$52 Million

January 2015 – February 2017

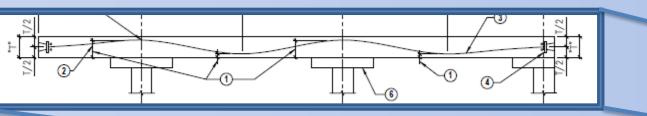
Courtesy of Holbert Apple Associates

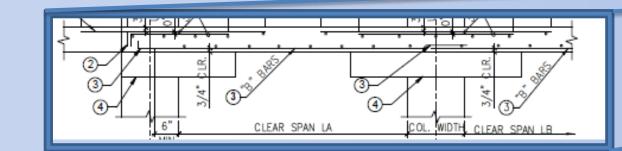
- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

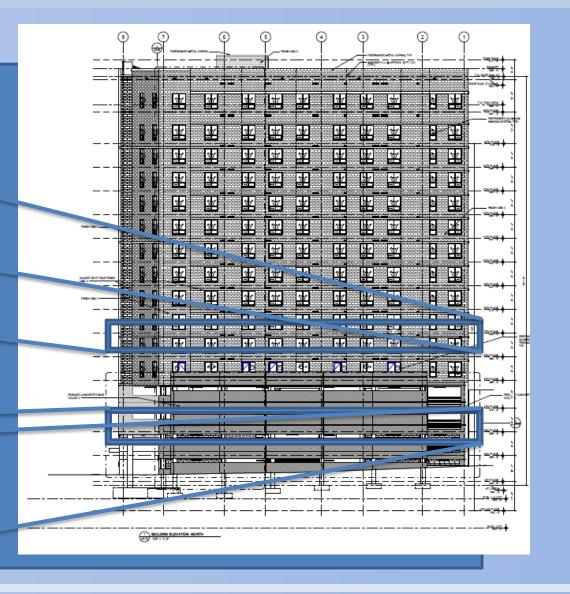

Building Introduction

Occupancy: 13 floors of apartments
4 floors of parking & retail, etc.

Features:

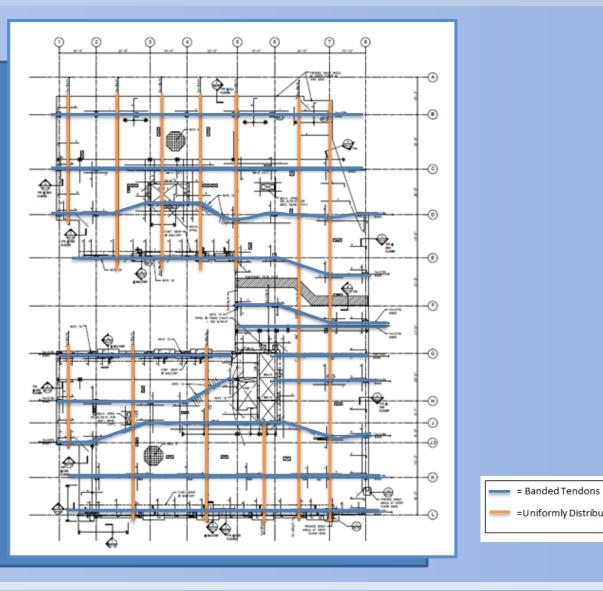

- Geometry change at level 5
- Green Roof
- Rooftop pool




- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Gravity System

- 7.25" post-tensioned flat plate
- -8" slab w/4" drop panels

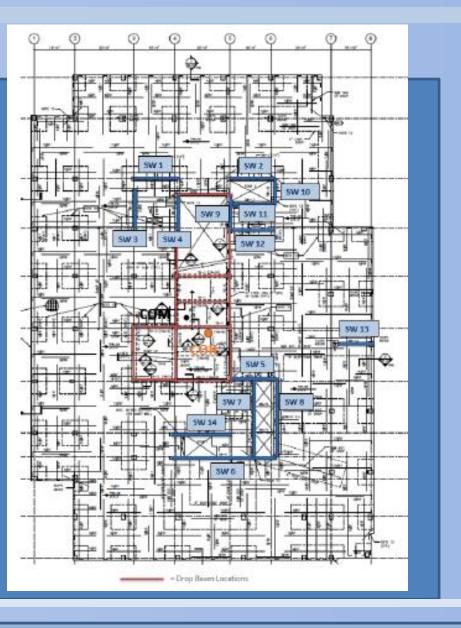


- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Gravity System

Two way PT system

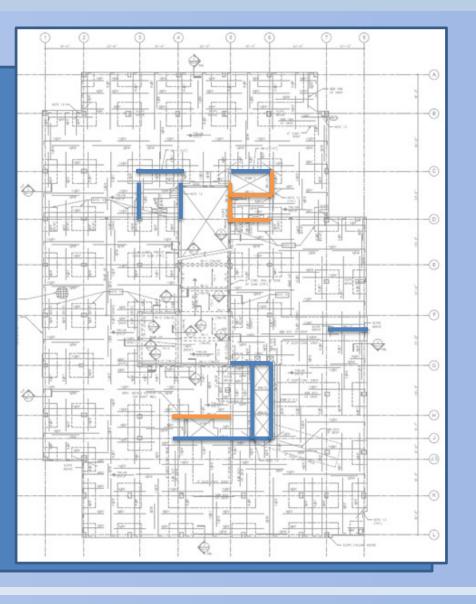
- -Banded Tendons
- -Uniformly Distributed Tendons



- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Lateral System

- Ordinary Reinforced Concrete Shear Walls
 - 12" or 14" thick
 - located near stair and elevator cores


- Additional beams added in parking garage

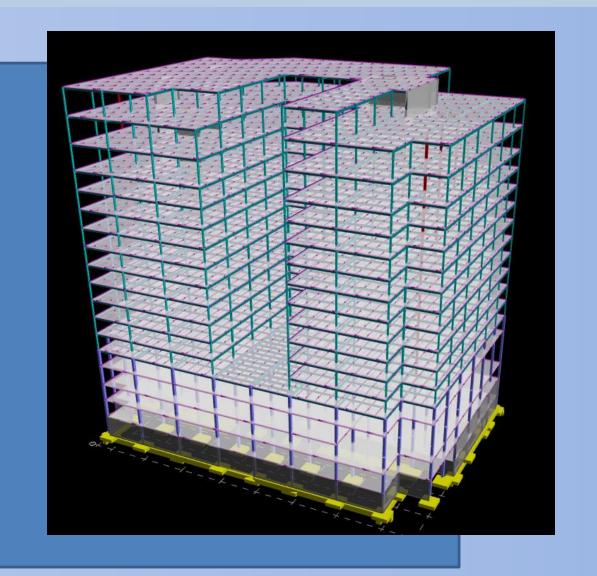
- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Lateral System

- Ordinary Reinforced Concrete Shear Walls
 - 12" or 14" thick
 - located near stair and elevator cores
- Additional beams added in parking garage
- Shear Walls vary in height

- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Problem Statement

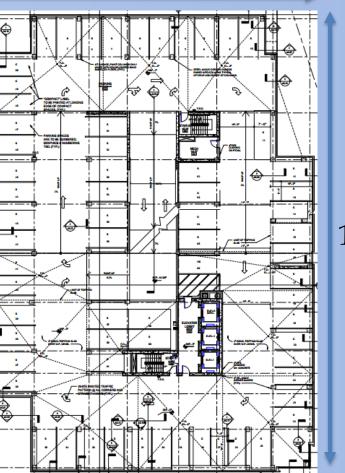

- Building is acceptable as designed
- Scenario: redesign the apartment levels in steel
- Consider impact on:
 - Architecture
 - Foundations
 - Vibrations
 - Cost

Proposed Solution

- Create a modular bay size and column locations
- Design apartment levels using composite beams and girders
- Move a level of parking garage below grade
- Investigate effects on foundations and lateral system
- Compare overall project cost

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Gravity Redesign



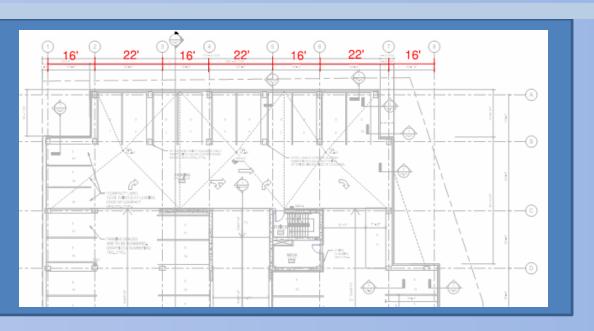
- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Typical Bay/Columns

- Square → Rectangular Bays
- Move Columns onto grid
- Mirror building proportions in bay proportions

133.5 ft.

192 ft.

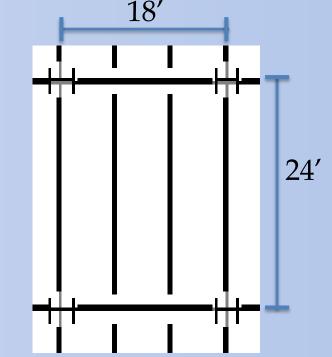

$$\frac{192}{133.5} = 1.44$$

- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Typical Bay/Columns

- Square → Rectangular Bays
- Move Columns onto grid
- Mirror building proportions in bay proportions

- Re-Orient Parking Spaces from 90° to 60°

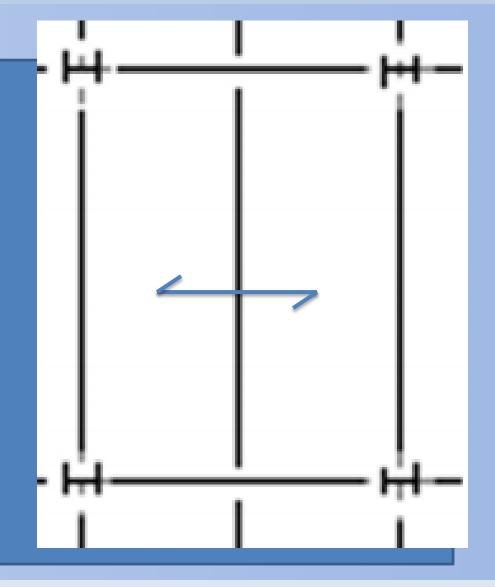


Parking Space Orientation	Minimum Throughway Width
90° spaces	24 feet
60° spaces	18 feet

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
 - Vibrations Analysis
 - •Beam Layout
 - •Beam/Column Design
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Vibrations Analysis

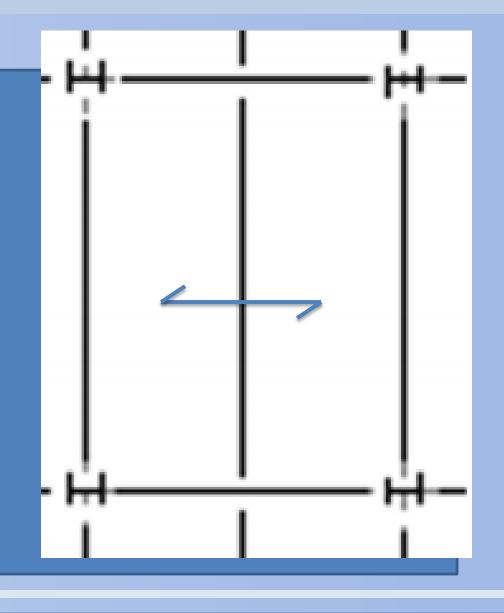
- Vibrations due to human walking activity
- Minimize accelerations in the floor
- Design Inputs:
- Deck: 1.5VLR20
- 4.5" LW Topping
- 6' beam spacing


Deck Properties			
Concrete Strength	4000 psi		
Steel Grade	50		
Deck Type	1.5VLR20		
Topping (in)	4.5		
Concrete Weight	LW		
Total Slab Thickness (in)	6		
Force from Excitation	$P_o = 65 lbs.$		
Damping Ratio	0.05		
Acceleration Limit	$\frac{a_o}{g} \times 100\% = 0.5\%$		

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
 - •Vibrations Analysis
 - •Beam Layout
 - •Beam/Column Design
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

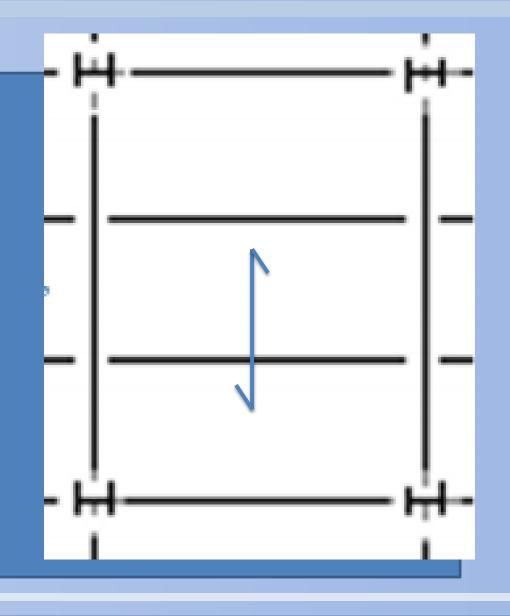
Vibrations Analysis

- Increasing beam sizes reduced steel utilization
- Increase Deck Gauge and Space beams further
 - 1.5VLR16
 - 9' foot beam spacing
- Increase Interaction to 0.75
- Limited by deflections


- Re-Check Vibrations
$$\frac{a_0}{g} = 0.48 < 0.5$$

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
 - Vibrations Analysis
 - •Beam Layout
 - •Beam/Column Design
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

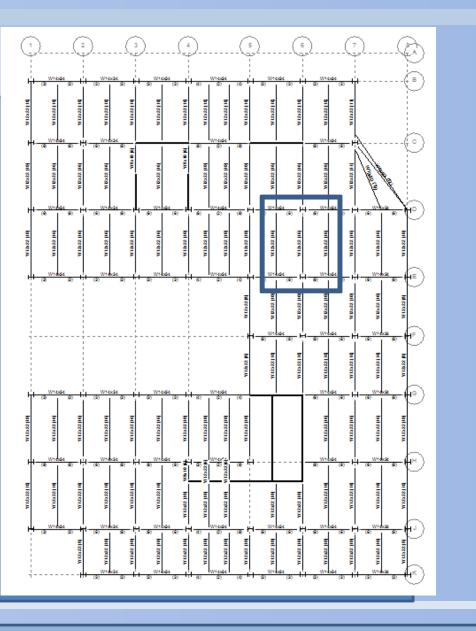
Beam Layout


- Long Direction
 - Short Direction

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
 - Vibrations Analysis
 - •Beam Layout
 - •Beam/Column Design
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Beam Layout

- Long Direction
 - **Short Direction**
 - Deck can not support single mid-span infill beam

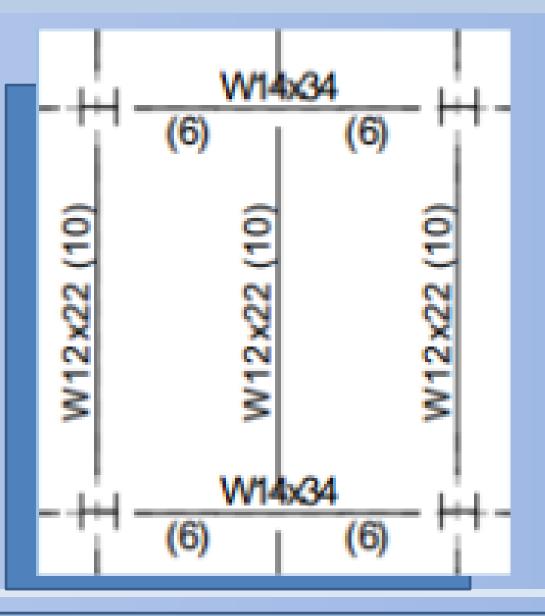


- Building Introduction
- Problem Statement & Solution
- Composite Steel System
 - Vibrations Analysis
 - •Beam Layout
 - •Beam/Column Design
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Beam Layout

- Long Direction selected

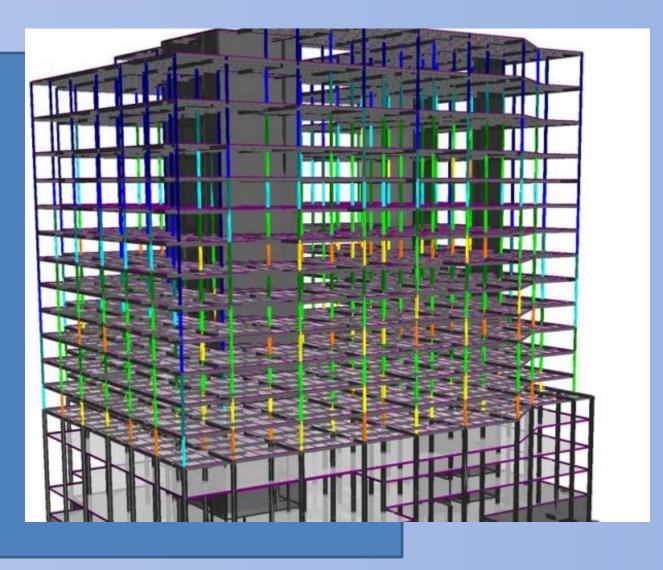
Beam Orientation			
	Steel Weight (tons)	# of Members	# of studs
Long	590.9	2,220	25,093
Short	627.3	2,577	28,387



- Building Introduction
- Problem Statement & Solution
- Composite Steel System
 - Vibrations Analysis
 - •Beam Layout
 - •Beam/Column Design
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

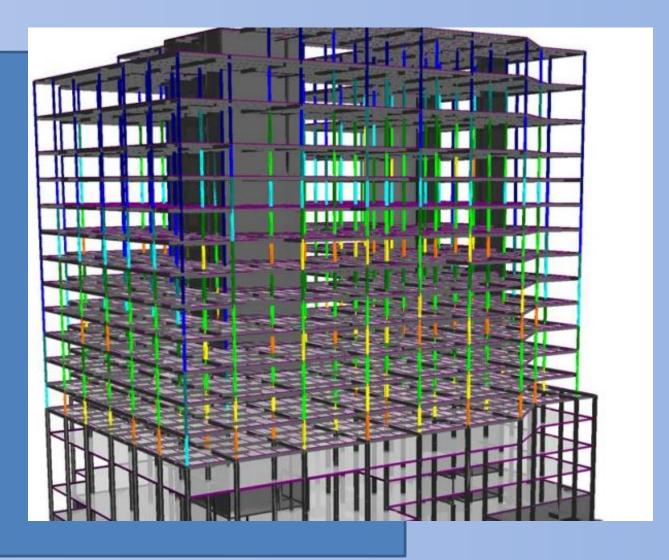
Beam Layout

Long Direction selected

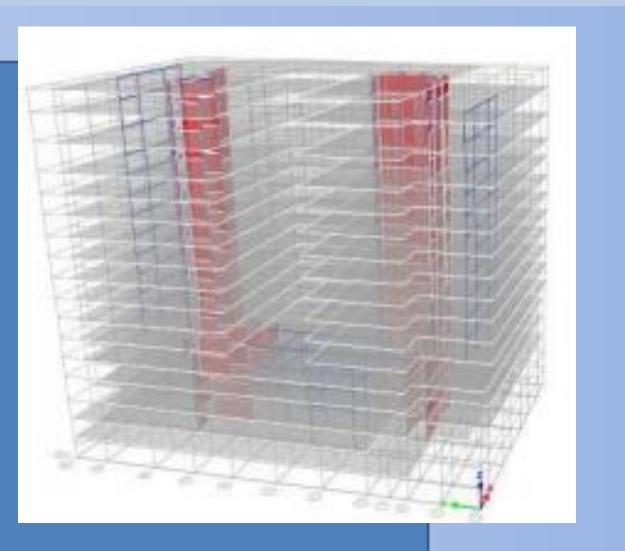

Beam Orientation			
	Steel Weight (tons)	# of Members	# of studs
Long	590.9	2,220	25,093
Short	627.3	2,577	28,387

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
 - Vibrations Analysis
 - •Beam Layout
 - Beam/Column Design
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Column Design


- W10 or W12 columns
 - Column depth constant through building height
 - Sizes vary along height for efficiency
- Spliced every two floors

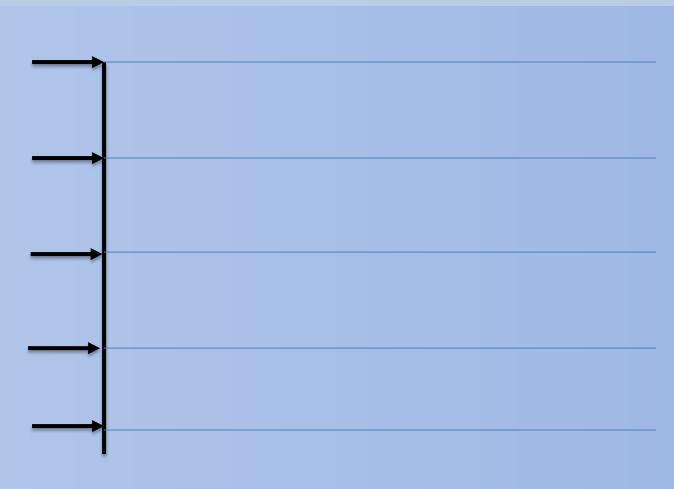
- Building Introduction
- Problem Statement & Solution
- Composite Steel System
 - Vibrations Analysis
 - •Beam Layout
 - •Beam/Column Design
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion


Column Design

Exterior Column – H8		Interi	or Colun	nn - D6	
Floor	Size	Interaction	Floor	Size	Interaction
10-16	W10x33	0.20 - 0.93	13-16	W12x40	0.35 - 0.94
7-9	W10x45	0.76 – 0.95	10-12	W12x58	0.72 - 0.98
4-6	W10x54	0.81 - 0.94	7-9	W12x79	0.78 - 0.97
			4-6	W12x106	0.79 - 0.91

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Lateral System

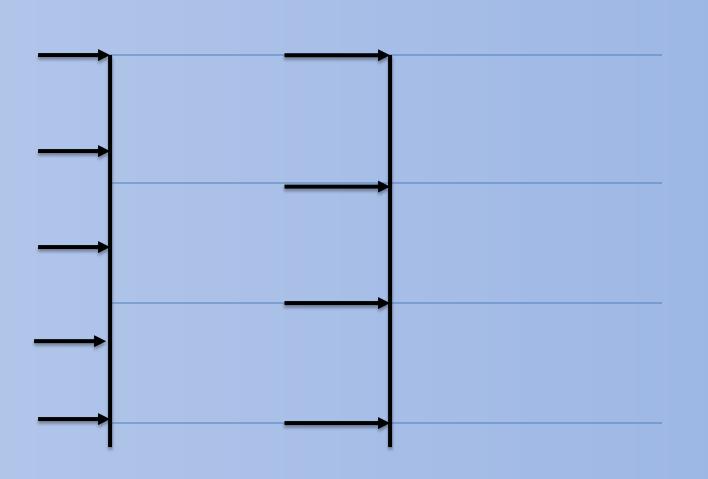

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
 - •Layout
 - •Shear Walls
 - •Moment Frames
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Lateral Layout

-Reduced Building Weight
-Seismic forces decrease

-Wind Controls

-Building height unchanged with less floors -Story forces increase

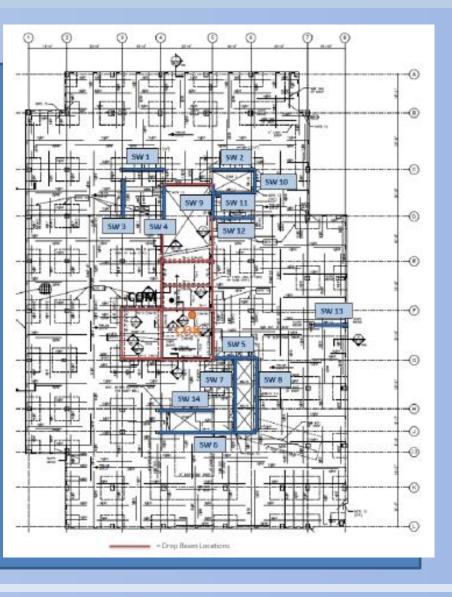

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
 - •Layout
 - •Shear Walls
 - •Moment Frames
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Lateral Layout

-Reduced Building Weight
-Seismic forces decrease

-Wind Controls

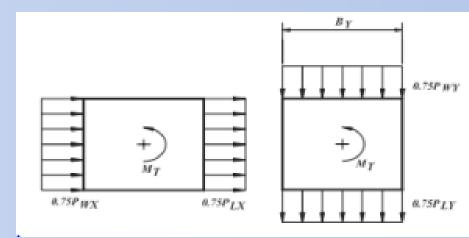
-Building height unchanged with less floors -Story forces increase


- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
 - •Layout
 - •Shear Walls
 - •Moment Frames
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Lateral Layout

-Reduced Building Weight
-Seismic forces decrease

-Wind Controls

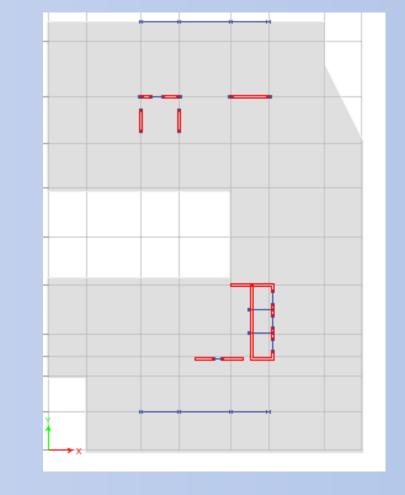

-Building height unchanged with less floors -Story forces increase

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
 - •Layout
 - •Shear Walls
 - •Moment Frames
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Lateral Layout

- Remove isolated shear wall
 -architectural conflicts
 -ineffective in resisting torsion
- Check without SW#13

Drift due to Wind Case 2 in the X Direction


Load Case	Max Drift (in)	Allowable Drift (in)	Pass / Fail
X Direction (+M)	2.840	4.83	PASS
X Direction (-M)	4.822	4.83	RE-EVALUATE

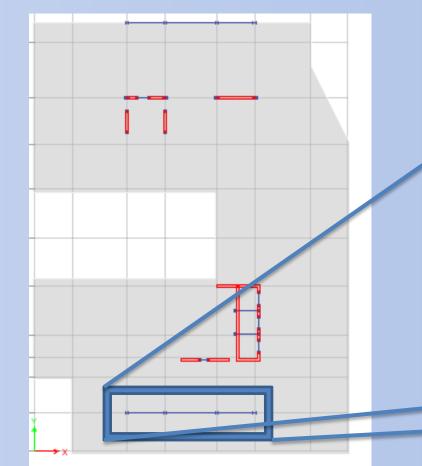
- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
 - •Layout
 - •Shear Walls
 - •Moment Frames
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Lateral Layout

-Remove isolated shear wall -architectural conflicts -ineffective

-Add Moment Frames
-reduce displacement
-reduce torsion

Drift due to Wind Case 2 in the X Direction


Load Case	Max Drift (in)	Allowable Drift (in)	Pass / Fail
Direction (+M)	2.80	4.83	PASS
(Direction (-M)	4.76	4.83	PASS

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
 - •Layout
 - •Shear Walls
 - •Moment Frames
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

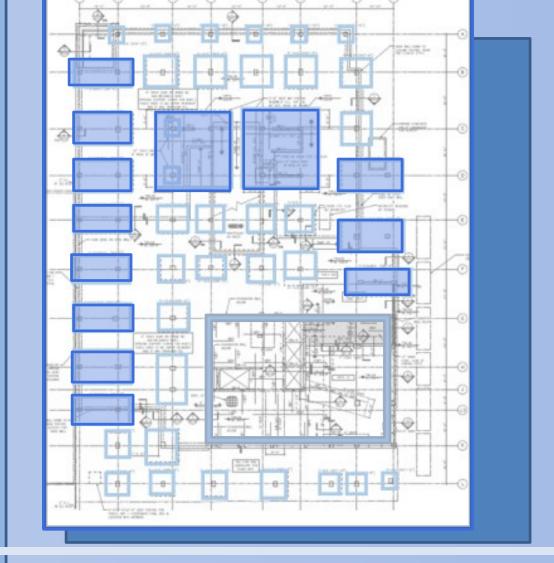
Lateral Layout

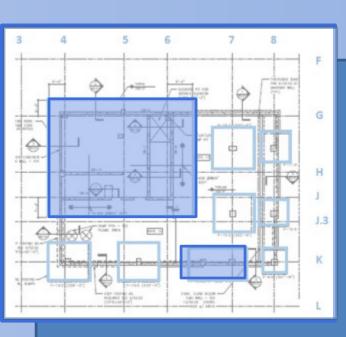
-Remove isolated shear wall
-architectural conflicts
-ineffective

-Add Moment Frames
-reduce displacement
-reduce torsion

	W14X34	W14X34	W14X34
W12X96	W14X34	W14X34	W14X34
W12X96	W14X34	W14X34	W14X34
W12X96	W14X34	W12X34	W14X34
W12X96	W12X96	W12X96	W12X96

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

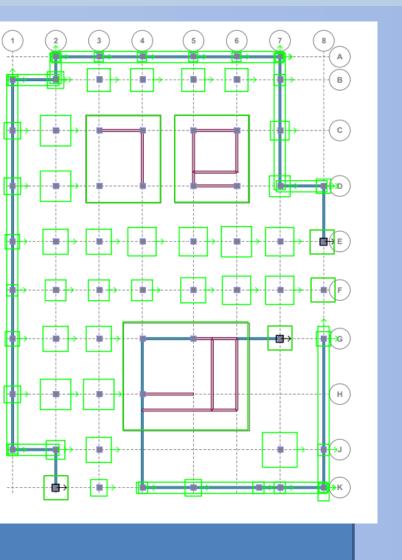

Foundation System


- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- Conclusion

Foundation System

- Reduced Building Weight → Reduce Footing Size

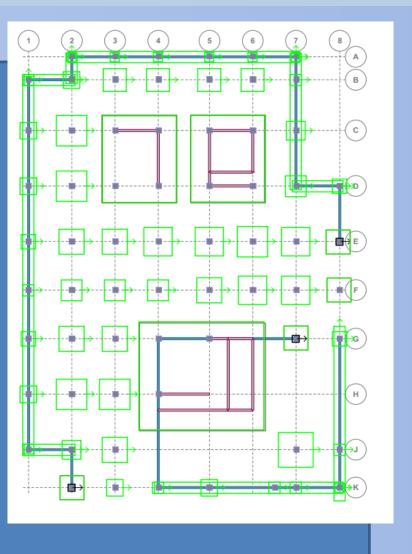
- Shared Column Footings → Two individual footings



- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Foundation System

- Reduced Building Weight → Reduce Footing Size


- Shared Column Footings → Two individual footings

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Foundation System

Foundation System Comparison			
	Concrete (CY)	Formwork (SFCA)	Steel (tons)
Existing	1762.4	10599.5	69.48
Re-Designed	1105.0	7094.7	56.14
% Decrease	37.3%	33.1%	19.2%

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Ventilation System Design

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Ventilation System

- Underground parking → Need to exhaust air
- 4 Exhaust fans
- Rely on air pressure to move clean air
- Air exhausted safely away from pedestrian area.

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Cost Comparison

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Cost Comparison

- Based on Cost Information from RS Means

- Cost Savings from Foundation Reduction

Steel System Cost Analysis			
Redesigned System	Cost	Net Difference	
Steel Framing	\$9,452,439	- \$3,400,736	
Foundation	\$1,028,110	+ \$721,356	
Ventilation	\$52,274	- \$52,274	
Additional Excavation	\$149,804	- \$149,804	
Parking Spaces	\$79,380	- \$79,380	
Totals	\$10,762,007	-\$2,960,837	

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Cost Comparison

6% Project Cost Increase

23% Structural Increase

Total System Cost		
Steel	Concrete	
\$10,762,007	\$7,801,170	

Per Square Foot Cost		
Steel	Concrete	
\$43.11	\$31.25	

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Conclusion

- Created a modular bay size with minimal architectural impact
- Designed a steel gravity system with vibration controlling characteristics
- Re-design foundation system
- Provide underground parking
- Determine the feasibility of a steel system
 - Project cost increase

Courtesy of Holbert Apple Associates

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Acknowledgments

A Very Special Thanks to:

- Holbert Apple Associates
 - David Holbert & David Smith
- AE Faculty, especially Thomas Boothby
- Family, Friends, and Classmates
- Jesus Christ

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Questions and Comments?

- Building Introduction
- Problem Statement & Solution
- Composite Steel System
- Lateral System
- Foundation System
- Ventilation System
- Cost and Schedule Analysis
- •Conclusion

Questions and Comments?

